
Byzantine Fault Tolerance: Prime vs the Bitcoin Blockchain 

 James Charles 
Sunayu LLC 

james.charles@sunayu.com 

 

ABSTRACT 

The rise of global, peer-to-peer cryptocurrency networks inspired 
by the Bitcoin blockchain has given new relevance to the design 
and implementation of Byzantine fault tolerant systems.  In this 
paper, we will describe the meaning of "Byzantine" faults, present 
two very different solutions to the problem—Prime and the Bitcoin 
blockchain—and explore their comparative strengths and 
weaknesses. 

KEYWORDS 

Byzantine, replication, fault tolerance, Bitcoin, 
blockchain, Prime 

 

1 INTRODUCTION 

A "Byzantine" fault is any failure or malicious action 

of a component within a distributed system that 

could prevent other components from reaching 

agreement, wherein such agreement is required for 

correct operation of the system.  Byzantine fault 

tolerance (BFT) is a characteristic of distributed 

systems that can defend against these types of 

failures, allowing them to operate correctly in 

environments where certain nodes may be 

untrustworthy or outright malicious.   

This problem was originally articulated by Leslie 

Lamport, Robert Shostak, and Marshall Pease as The 

Byzantine Generals Problem [1]: 

We imagine that several divisions of the Byzantine 

army are camped outside an enemy city, each 

division commanded by its own general.  The 

generals can communicate with one another only 

by messenger.  After observing the enemy, they 

must decide on a common plan of action.  

However, some of the generals may be traitors, 

trying to prevent the loyal generals from reaching 

agreement.  The generals must have an algorithm 

to guarantee that: 

A. All loyal generals decide upon the same plan of 

action 

[...] 

B. A small number of traitors cannot cause the 

loyal generals to adopt a bad plan [1] 

In the simplest case, the generals must vote to 

decide whether to attack or retreat.  If the loyal 

generals attack together, they will take the city; if 

they retreat, they will live to fight another day.  

However, if a traitor can convince some generals to 

attack and others to retreat, then the halfhearted 

attack will be wiped out and the forces severely 

diminished.  Thus, it is imperative that all loyal 

generals agree upon the same information before 

making a decision. 

This problem has direct applications for 

distributed computer systems that need to operate 

correctly in environments where certain nodes may 

be untrustworthy or outright malicious.  Even for 

internal applications, any system perceived as 

sensitive or high-value is a potential target of 

advanced persistent threats (APTs) and, 

consequently, could contain latent, untrustworthy 

actors at any time.  In the face of these threats, 

critical systems must be able to tolerate Byzantine 

faults.  

2 CONSENSUS PROPERTIES 

For many practical BFT systems, the Byzantine 

Generals problem is generalized as a state machine 

replication (SMR) problem.  Rather than deciding 
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upon a simple Boolean value ("attack" or "retreat"), 

nodes in the system agree upon a globally ordered 

sequence of "updates" (alternatively "transactions", 

"operations", etc.), which determines the state of the 

system.  If all correct nodes in the system are able to 

agree upon the updates that are accepted and their 

ordering, then the state of each replica will be 

consistent—this is referred to as the "safety" of the 

system.  Additionally, if a correct node proposes an 

update to the system, it is expected that the update 

must be executed eventually—this is referred to as 

the "liveness" of the system.   

Most BFT protocols are generally expected to satisfy 

both of these criteria, even while under attack; i.e.: 

Safety: A malicious replica cannot convince a 

correct node to accept a state that is inconsistent 

with other correct nodes in the system 

Liveness: A malicious replica cannot prevent 

correct updates from being accepted by correct 

nodes in the system 

There are many protocols for solving this problem in 

BFT systems.  Some, like Prime, are optimized to 

provide strict performance guarantees in addition to 

safety and liveness.  Others, like the Bitcoin 

blockchain, are designed to operate under specific 

assumptions/environments, and take weaker 

approaches to safety and liveness.  Sections 2.1 and 

2.2 provide high-level overviews of the respective 

approaches to BFT taken by Prime and Bitcoin.  

Section 3 presents a brief analysis of their 

comparative strengths and weaknesses. 

3 PRACTICAL BFT SYSTEMS 

There are many systems for implementing BFT SMR.  

Some, like Prime, are optimized to provide strict 

performance guarantees in addition to safety and 

liveness.  Others, like the Bitcoin blockchain, are 

designed to operate under specific 

assumptions/environments, and take weaker 

approaches to safety and liveness.  Sections 3.1 and 

3.2 provide high-level overviews of the respective 

approaches to BFT taken by Prime and Bitcoin.  

Section 4 presents a brief analysis of their 

comparative strengths and weaknesses. 

3.1 Prime 

Prime is a Byzantine fault tolerant replication engine 

designed to provide strong performance guarantees 

and protection against denial-of-service attacks.  It 

was developed at Johns Hopkins University as an 

improvement upon PBFT (Practical Byzantine Fault 

Tolerance).  Like PBFT, Prime is a leader-based 

protocol, which means that it relies on a select 

node—i.e. a "leader"—to coordinate certain tasks in 

order to increase performance by reducing the 

amount of network communication required 

between nodes during normal operation.  It also 

provides similar, strong guarantees for safety and 

liveness (details below).  Unlike PBFT, however, 

Prime provides stronger guarantees for performance 

by limiting the possible impact of malicious servers.  

This is achieved by effectively forcing any leader that 

remains in power to meet a threshold level of 

performance, where the threshold is a function of 

the message delays between the correct servers in 

the system—which cannot be arbitrarily increased by 

malicious servers [2]. 

Prime provides strict guarantees of safety and 

liveness: 

Safety: If two correct Prime servers execute the i-

th update, then these updates are identical [2] 

Liveness: If a stable Prime server initiates an 

update, all stable servers will eventually execute 

the update [2] 

Additionally, it provides a strong performance 

guarantee: 

Bounded-delay: There exists a time after which 

the update latency for any update initiated by a 

stable server is upper-bounded 
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Given a topology of n=3f+2k+1 nodes, Prime 

guarantees these properties as long as 3 assumptions 

hold: 

1. No more than f replicas are compromised 

2. No more than k replicas are crashed/unavailable 

3. The network is sufficiently stable and servers are not 

overloaded 

Prime is able to guarantee performance while 

under attack because it limits the role of the leader 

when ordering updates.  It does this by ordering 

updates in two phases: 

 

Figure 1: Common case operation of Prime (f = 1), showing the 
protocol messages for each round when the leader is correct.  
This figure is from the original Prime whitepaper [2]; modified 
to show the two major protocol phases 

Preordering phase: Each server disseminates its 

updates to the other servers and coordinates an 

agreement protocol, which associates a 

preordering sequence number with each update.  

Once the update has been acknowledged by 

enough servers (which is done periodically), it is 

then considered eligible for global ordering.   

Global ordering phase: An elected leader 

periodically initiates a global ordering protocol, 

which selects the next block of preordered 

updates to be executed.  The final total order of 

updates within each block is then deterministically 

assigned based on their preorder identifiers. 

The preordering phase ensures that all correct 

servers are aware of any pending updates before 

they are submitted to the leader.  This allows non-

leader servers to evaluate the leader's performance 

every time a new block is executed.  If the leader is 

too slow in executing new blocks, or new blocks are 

 

* The blockchain community is fast-moving and has many applications/variations beyond Bitcoin.  This overview is based on the blockchain consensus protocol as described in 

the original Bitcoin paper released by Satoshi Nakamoto (often referred to as “Nakamoto consensus”). 

missing valid updates that should have been 

included, the non-leader servers are able to detect 

these failures and force a new leader to be elected. 

3.2 The Bitcoin blockchain*
 

The original aim of Bitcoin was to provide:  

[…] an electronic payment system based on 
cryptographic proof instead of trust, allowing any 

two willing parties to transact directly with each 

other without the need for a trusted third party 

[3] 

To accomplish this, it proposed a solution to the 

double-spending problem based on "a peer-to-peer 

distributed timestamp server to generate 

computational proof of the chronological order of 

transactions"[3].   

This timestamp server works by grouping pending 

transactions into a block, computing a hash of that 

block, and widely publishing the result.  The hash of 

each block includes the hash of the block 

immediately preceding it, forming a "blockchain".  

Because executing the transactions of a block n 

require first knowing the hash of block n-1—and, in 

effect, executing block n-1—it follows that the 

transactions included in block n must causally follow 

the transactions in block n-1.  Thus, succeeding 

blocks in the blockchain establish an ordered 

sequence of executed transactions.  Each additional 

block, in turn, appends to this sequence—otherwise 

referred to as a "ledger"—advancing the state of the 

system. 

 



4 

 

Figure 2: Simplified view of blocks in the Bitcoin blockchain.  
This figure is from the original Bitcoin whitepaper [3]. 

In order for this to work in a distributed peer-to-

peer (P2P) network, however, the protocol must 

include some mechanism for determining consensus.  

Rather than relying on cryptographic identities (like 

Prime, and many other distributed consensus 

protocols), however, Bitcoin proposed a system for 

ascribing value to each block using a proof-of-work 

(PoW).   

Generally speaking, a PoW is a token which is the 

result of a cost-function.  According to the Hashcash 

whitepaper [4], a cost-function is a mathematical 

function that is "efficiently verifiable, but 

parameterisably expensive to compute".  In order for 

a peer to generate (or "mint") a PoW token, they 

must execute the cost-function—thusly binding the 

"cost" of the PoW token to the physical cost of 

executing this function. 

Bitcoin uses a CPU cost-function based on 

Hashcash, which is "a non-interactive, publicly-

auditable, trapdoor-free cost function with 

unbounded probabilistic cost"[4].  Per the Bitcoin 

whitepaper: 

For our timestamp network, we implement the 

proof-of-work by incrementing a nonce in the 

block until a value is found that gives the block's 

hash the required zero bits.  Once the CPU effort 

has been expended to make it satisfy the proof-of-

work, the block cannot be changed without 

redoing the work.  As later blocks are chained 

after it, the work to change the block would 

include redoing all the blocks after it. [3] 

By requiring that the hash value of each block 

function as a PoW token, this associates a cost of 

physical CPU resources to the production of each 

block.  Additionally, because the average cost of 

generating a block is fixed, a value can be associated 

with any view of the blockchain based simply on the 

number of blocks in the chain: e.g. if two nodes have 

conflicting views of the blockchain, the one with the 

longest chain has higher value, since a greater 

number of resources must have been spent in order 

to generate that chain.  Thus, nodes in the Bitcoin 

network are able to determine consensus using this 

property: i.e. "the majority decision is represented by 

the longest chain, which has the greatest proof-of-

work effort invested in it"[3].  This is commonly 

referred to as "one-CPU-one-vote". 

 

Figure 3: View of blocks in the Bitcoin blockchain with nonce 
value used to solve PoW.  This figure is from the original 
Bitcoin whitepaper [3]. 

This process can be thought of a never-ending 

race to calculate (or "mine") the next block in the 

chain.  In order for a block to ultimately be executed, 

it has to be included in the longest chain that 

eventually becomes accepted by a majority of the 

network.  Once a node solves the PoW for a block, it 

must broadcast the result to other nodes in the 

system with the expectation that they will accept the 

block and begin calculating their next PoW on top of 

it.  Because the longest chain is always selected, 

these nodes can only make progress if they have the 

most up-to-date view of the blockchain and, 

consequently, are incentivized to accept newly mined 

blocks as soon as they are broadcast.  If a malicious 

actor wished to override or modify any blocks in the 

chain, they would have to re-solve not only the PoW 

for that block, but also the PoWs for all subsequent 

blocks until becoming the longest chain in the 

network.  Thus, as long as a majority of CPU 

resources in the network continue to make progress 

together, they would most likely outpace the 

minority branch—preventing the malicious change 

from ever being accepted by the honest nodes in the 

network. 
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4 COMPARISON 

4.1 Safety & Liveness 

Prime and Bitcoin take very different approaches to 

safety and liveness.  Prime (again) provides very strict 

guarantees: 

Prime-Safety: If two correct Prime servers execute 

the i-th update, then these updates are identical 

Prime-Liveness: If a stable Prime server initiates an 

update, all stable servers will eventually execute 

the update 

The Bitcoin blockchain provides an "eventual 

consistency" guarantee for safety; i.e.:  

Nodes always consider the longest chain to be the 

correct one and will keep working on extending it.  

If two nodes broadcast different versions of the 

next block simultaneously, some nodes may 

receive one or the other first.  In that case, they 

work on the first one that they received, but save 

the other branch in case it becomes longer.  The 

tie will be broken when the next proof-of-work is 

found and one branch becomes longer; the nodes 

that were working on the other branch will then 

switch to the longer one. [3] 

Bitcoin can also be said to provide a "best effort" 

guarantee for liveness; i.e.: 

New transaction broadcasts do not necessarily 

need to reach all nodes.  As long as they reach 

many nodes, they will get into a block before long. 

[3] 

 

Figure 4: Example of a partition among nodes in three distinct 
regions for a blockchain-based application.  The partition in the 
network causes the state of the application to fork while all 
nodes continue to make (potentially unsafe) progress.  
Eventually, global state is resolved once the partition is healed. 
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Figure 5: Example of a partition among nodes in three distinct 
regions for a Prime-based application.  The partition in the 
network causes Region 3 to wait until a quorum of nodes are 
available.  Regions 1 & 2 continue to operate safely without 
interruption.  Once the partition is healed, Region 3 recovers 
any necessary updates from other nodes and resumes normal 
operation. 

With regards to safety, the differences in these 

approaches can be seen in figures 4 and 5.   

Figure 4 shows how a blockchain-based system 

responds to a partition among nodes in three distinct 

regions (for all intents and purposes, these could be 

datacenters).  Before the partition, all nodes are 

connected and maintain consistent state.  Once the 

partition occurs, Region 3 continues to make 

progress independently from Regions 1 and 2, 

causing the state of the state of the blockchain to 

fork.  Once the partition heals, nodes are able to 

communicate once again.  Because the branch of the 

chain in Region 3 is shorter, all blocks that were 

calculated are no longer considered valid and must 

be discarded. 

Figure 5 shows how a Prime-based application 

responds to a partition among nodes in three distinct 

regions.  Like figure 4, the nodes start connected and 

in consistent state.  However, once the partition 

occurs in the Prime-based network, Region 3 must 

wait until a quorum is available in order to continue.  

Any pending updates in Region 3 must be buffered; 

whereas Regions 1 and 2 continue to safely make 

progress.  Once the partition heals, Region 3 recovers 

any missing state from the other nodes, and may 

begin processing any updates received during the 

outage. 

Bitcoin is able to tolerate weak safety in 

exchange for network flexibility because, in a highly 

connected and geographically diverse network, any 

partitions are likely to be short-lived and affect a 

smaller percentage of nodes.  However, this example 

demonstrates the limitations of this approach for 

internal or business-to-business (B2B) applications 

where resources tend to be more concentrated. 

4.2 Other Points of Comparison 

3.2.1 Topology.  One of the most significant 

differences between Prime and the Bitcoin 

blockchain are the assumptions made about the 

topologies of their respective networks. 

Prime assumes a closed network wherein all 

nodes form a clique: i.e. each server knows about 

every other server in the system and they are able to 

communicate directly with one another across long 

term, authenticated channels.  This is a reasonable 

requirement for the majority of internal and B2B 

applications, but is clearly limiting when compared to 

a public, P2P network like Bitcoin.  Additionally, 

Prime relies on cryptographic techniques to protect 

against spoofing, impersonation, replays, and 

corrupted messages—which requires that the 

network be provisioned with public key 

infrastructure (PKI). 

Bitcoin, on the other hand, operates across an 

unbounded, open network.  Because consensus is 

based on PoW, instead of cryptographic identities, 

nodes across the network can effectively work 

together for mutual self-interest without any 

knowledge or trust of one another.  This has allowed 

the Bitcoin network to grow to a global scale without 

significant coordination between parties or 

centralized authorities. 

3.2.2 Attribution.  Attribution refers to the 

ability of the system to associate actions as being 

caused by a specific person/entity.  Prime and Bitcoin 

treat attribution very differently and, depending on 

context, it can be seen as either an asset or a liability. 

Within Prime, all updates within the system are 

associated with the cryptographic identity of the 

originating node.  This provides strong attribution, 

since a specific node can generally be associated with 

the responsible person/entity.  This is typically a 

desired feature for most internal and B2B 

applications with may have specific auditing, 

compliance, or regulatory requirements. 
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Bitcoin, by comparison, offers no intrinsic 

mechanism for associating a block with the original 

miner.  While it is possible in some cases to 

determine attribution for blocks or even 

transactions, these methods are not part of the 

protocol itself and generally require some case-

specific, external information.  In the context of a 

public blockchain, however, it is generally considered 

an asset of the protocol, since it makes the system 

largely intractable for regulation by centralized 

authorities. 

5 CONCLUSION 

Prime and the Bitcoin blockchain represent two 

fundamentally different solutions to the Byzantine 

generals problem.  By taking a weaker approach to 

safety and liveness, Bitcoin is able to support an 

unbounded, unauthenticated, global peer-to-peer 

network--enabling a new generation of applications 

based on the public blockchain.  This new paradigm 

of "public" applications is entirely made possible by 

the topological flexibility of the blockchain.   

However, while this has been a major 

advancement in the design and construction of 

distributed systems, there are many use cases for 

non-public applications wherein Byzantine fault 

tolerance is still a necessary requirement.  These 

include federated applications wherein 

information/state is hosted and shared only among 

specified set of distinct stakeholders, or even internal 

applications that are extremely high-value and/or 

security critical.  For many of these applications, it is 

advantageous to have a fixed network wherein all 

nodes are known and authenticated.  Additionally, 

lack of strong attribution and heavy resource (CPU) 

requirements make most blockchain protocols 

preclusive for these use cases.  Thus, the strong 

guarantees for safety and liveness provided by Prime, 

along with its performance gains, make it highly 

applicable for these types of applications. 
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