
Byzantine Fault Tolerance: Prime vs the Bitcoin Blockchain

 James Charles
Sunayu LLC

james.charles@sunayu.com

ABSTRACT

The rise of global, peer-to-peer cryptocurrency networks inspired
by the Bitcoin blockchain has given new relevance to the design
and implementation of Byzantine fault tolerant systems. In this
paper, we will describe the meaning of "Byzantine" faults, present
two very different solutions to the problem—Prime and the Bitcoin
blockchain—and explore their comparative strengths and
weaknesses.

KEYWORDS

Byzantine, replication, fault tolerance, Bitcoin,
blockchain, Prime

1 INTRODUCTION

A "Byzantine" fault is any failure or malicious action

of a component within a distributed system that

could prevent other components from reaching

agreement, wherein such agreement is required for

correct operation of the system. Byzantine fault

tolerance (BFT) is a characteristic of distributed

systems that can defend against these types of

failures, allowing them to operate correctly in

environments where certain nodes may be

untrustworthy or outright malicious.

This problem was originally articulated by Leslie

Lamport, Robert Shostak, and Marshall Pease as The

Byzantine Generals Problem [1]:

We imagine that several divisions of the Byzantine

army are camped outside an enemy city, each

division commanded by its own general. The

generals can communicate with one another only

by messenger. After observing the enemy, they

must decide on a common plan of action.

However, some of the generals may be traitors,

trying to prevent the loyal generals from reaching

agreement. The generals must have an algorithm

to guarantee that:

A. All loyal generals decide upon the same plan of

action

[...]

B. A small number of traitors cannot cause the

loyal generals to adopt a bad plan [1]

In the simplest case, the generals must vote to

decide whether to attack or retreat. If the loyal

generals attack together, they will take the city; if

they retreat, they will live to fight another day.

However, if a traitor can convince some generals to

attack and others to retreat, then the halfhearted

attack will be wiped out and the forces severely

diminished. Thus, it is imperative that all loyal

generals agree upon the same information before

making a decision.

This problem has direct applications for

distributed computer systems that need to operate

correctly in environments where certain nodes may

be untrustworthy or outright malicious. Even for

internal applications, any system perceived as

sensitive or high-value is a potential target of

advanced persistent threats (APTs) and,

consequently, could contain latent, untrustworthy

actors at any time. In the face of these threats,

critical systems must be able to tolerate Byzantine

faults.

2 CONSENSUS PROPERTIES

For many practical BFT systems, the Byzantine

Generals problem is generalized as a state machine

replication (SMR) problem. Rather than deciding

2

upon a simple Boolean value ("attack" or "retreat"),

nodes in the system agree upon a globally ordered

sequence of "updates" (alternatively "transactions",

"operations", etc.), which determines the state of the

system. If all correct nodes in the system are able to

agree upon the updates that are accepted and their

ordering, then the state of each replica will be

consistent—this is referred to as the "safety" of the

system. Additionally, if a correct node proposes an

update to the system, it is expected that the update

must be executed eventually—this is referred to as

the "liveness" of the system.

Most BFT protocols are generally expected to satisfy

both of these criteria, even while under attack; i.e.:

Safety: A malicious replica cannot convince a

correct node to accept a state that is inconsistent

with other correct nodes in the system

Liveness: A malicious replica cannot prevent

correct updates from being accepted by correct

nodes in the system

There are many protocols for solving this problem in

BFT systems. Some, like Prime, are optimized to

provide strict performance guarantees in addition to

safety and liveness. Others, like the Bitcoin

blockchain, are designed to operate under specific

assumptions/environments, and take weaker

approaches to safety and liveness. Sections 2.1 and

2.2 provide high-level overviews of the respective

approaches to BFT taken by Prime and Bitcoin.

Section 3 presents a brief analysis of their

comparative strengths and weaknesses.

3 PRACTICAL BFT SYSTEMS

There are many systems for implementing BFT SMR.

Some, like Prime, are optimized to provide strict

performance guarantees in addition to safety and

liveness. Others, like the Bitcoin blockchain, are

designed to operate under specific

assumptions/environments, and take weaker

approaches to safety and liveness. Sections 3.1 and

3.2 provide high-level overviews of the respective

approaches to BFT taken by Prime and Bitcoin.

Section 4 presents a brief analysis of their

comparative strengths and weaknesses.

3.1 Prime

Prime is a Byzantine fault tolerant replication engine

designed to provide strong performance guarantees

and protection against denial-of-service attacks. It

was developed at Johns Hopkins University as an

improvement upon PBFT (Practical Byzantine Fault

Tolerance). Like PBFT, Prime is a leader-based

protocol, which means that it relies on a select

node—i.e. a "leader"—to coordinate certain tasks in

order to increase performance by reducing the

amount of network communication required

between nodes during normal operation. It also

provides similar, strong guarantees for safety and

liveness (details below). Unlike PBFT, however,

Prime provides stronger guarantees for performance

by limiting the possible impact of malicious servers.

This is achieved by effectively forcing any leader that

remains in power to meet a threshold level of

performance, where the threshold is a function of

the message delays between the correct servers in

the system—which cannot be arbitrarily increased by

malicious servers [2].

Prime provides strict guarantees of safety and

liveness:

Safety: If two correct Prime servers execute the i-

th update, then these updates are identical [2]

Liveness: If a stable Prime server initiates an

update, all stable servers will eventually execute

the update [2]

Additionally, it provides a strong performance

guarantee:

Bounded-delay: There exists a time after which

the update latency for any update initiated by a

stable server is upper-bounded

 3

Given a topology of n=3f+2k+1 nodes, Prime

guarantees these properties as long as 3 assumptions

hold:

1. No more than f replicas are compromised

2. No more than k replicas are crashed/unavailable

3. The network is sufficiently stable and servers are not

overloaded

Prime is able to guarantee performance while

under attack because it limits the role of the leader

when ordering updates. It does this by ordering

updates in two phases:

Figure 1: Common case operation of Prime (f = 1), showing the
protocol messages for each round when the leader is correct.
This figure is from the original Prime whitepaper [2]; modified
to show the two major protocol phases

Preordering phase: Each server disseminates its

updates to the other servers and coordinates an

agreement protocol, which associates a

preordering sequence number with each update.

Once the update has been acknowledged by

enough servers (which is done periodically), it is

then considered eligible for global ordering.

Global ordering phase: An elected leader

periodically initiates a global ordering protocol,

which selects the next block of preordered

updates to be executed. The final total order of

updates within each block is then deterministically

assigned based on their preorder identifiers.

The preordering phase ensures that all correct

servers are aware of any pending updates before

they are submitted to the leader. This allows non-

leader servers to evaluate the leader's performance

every time a new block is executed. If the leader is

too slow in executing new blocks, or new blocks are

* The blockchain community is fast-moving and has many applications/variations beyond Bitcoin. This overview is based on the blockchain consensus protocol as described in

the original Bitcoin paper released by Satoshi Nakamoto (often referred to as “Nakamoto consensus”).

missing valid updates that should have been

included, the non-leader servers are able to detect

these failures and force a new leader to be elected.

3.2 The Bitcoin blockchain*

The original aim of Bitcoin was to provide:

[…] an electronic payment system based on
cryptographic proof instead of trust, allowing any

two willing parties to transact directly with each

other without the need for a trusted third party

[3]

To accomplish this, it proposed a solution to the

double-spending problem based on "a peer-to-peer

distributed timestamp server to generate

computational proof of the chronological order of

transactions"[3].

This timestamp server works by grouping pending

transactions into a block, computing a hash of that

block, and widely publishing the result. The hash of

each block includes the hash of the block

immediately preceding it, forming a "blockchain".

Because executing the transactions of a block n

require first knowing the hash of block n-1—and, in

effect, executing block n-1—it follows that the

transactions included in block n must causally follow

the transactions in block n-1. Thus, succeeding

blocks in the blockchain establish an ordered

sequence of executed transactions. Each additional

block, in turn, appends to this sequence—otherwise

referred to as a "ledger"—advancing the state of the

system.

4

Figure 2: Simplified view of blocks in the Bitcoin blockchain.
This figure is from the original Bitcoin whitepaper [3].

In order for this to work in a distributed peer-to-

peer (P2P) network, however, the protocol must

include some mechanism for determining consensus.

Rather than relying on cryptographic identities (like

Prime, and many other distributed consensus

protocols), however, Bitcoin proposed a system for

ascribing value to each block using a proof-of-work

(PoW).

Generally speaking, a PoW is a token which is the

result of a cost-function. According to the Hashcash

whitepaper [4], a cost-function is a mathematical

function that is "efficiently verifiable, but

parameterisably expensive to compute". In order for

a peer to generate (or "mint") a PoW token, they

must execute the cost-function—thusly binding the

"cost" of the PoW token to the physical cost of

executing this function.

Bitcoin uses a CPU cost-function based on

Hashcash, which is "a non-interactive, publicly-

auditable, trapdoor-free cost function with

unbounded probabilistic cost"[4]. Per the Bitcoin

whitepaper:

For our timestamp network, we implement the

proof-of-work by incrementing a nonce in the

block until a value is found that gives the block's

hash the required zero bits. Once the CPU effort

has been expended to make it satisfy the proof-of-

work, the block cannot be changed without

redoing the work. As later blocks are chained

after it, the work to change the block would

include redoing all the blocks after it. [3]

By requiring that the hash value of each block

function as a PoW token, this associates a cost of

physical CPU resources to the production of each

block. Additionally, because the average cost of

generating a block is fixed, a value can be associated

with any view of the blockchain based simply on the

number of blocks in the chain: e.g. if two nodes have

conflicting views of the blockchain, the one with the

longest chain has higher value, since a greater

number of resources must have been spent in order

to generate that chain. Thus, nodes in the Bitcoin

network are able to determine consensus using this

property: i.e. "the majority decision is represented by

the longest chain, which has the greatest proof-of-

work effort invested in it"[3]. This is commonly

referred to as "one-CPU-one-vote".

Figure 3: View of blocks in the Bitcoin blockchain with nonce
value used to solve PoW. This figure is from the original
Bitcoin whitepaper [3].

This process can be thought of a never-ending

race to calculate (or "mine") the next block in the

chain. In order for a block to ultimately be executed,

it has to be included in the longest chain that

eventually becomes accepted by a majority of the

network. Once a node solves the PoW for a block, it

must broadcast the result to other nodes in the

system with the expectation that they will accept the

block and begin calculating their next PoW on top of

it. Because the longest chain is always selected,

these nodes can only make progress if they have the

most up-to-date view of the blockchain and,

consequently, are incentivized to accept newly mined

blocks as soon as they are broadcast. If a malicious

actor wished to override or modify any blocks in the

chain, they would have to re-solve not only the PoW

for that block, but also the PoWs for all subsequent

blocks until becoming the longest chain in the

network. Thus, as long as a majority of CPU

resources in the network continue to make progress

together, they would most likely outpace the

minority branch—preventing the malicious change

from ever being accepted by the honest nodes in the

network.

 5

4 COMPARISON

4.1 Safety & Liveness

Prime and Bitcoin take very different approaches to

safety and liveness. Prime (again) provides very strict

guarantees:

Prime-Safety: If two correct Prime servers execute

the i-th update, then these updates are identical

Prime-Liveness: If a stable Prime server initiates an

update, all stable servers will eventually execute

the update

The Bitcoin blockchain provides an "eventual

consistency" guarantee for safety; i.e.:

Nodes always consider the longest chain to be the

correct one and will keep working on extending it.

If two nodes broadcast different versions of the

next block simultaneously, some nodes may

receive one or the other first. In that case, they

work on the first one that they received, but save

the other branch in case it becomes longer. The

tie will be broken when the next proof-of-work is

found and one branch becomes longer; the nodes

that were working on the other branch will then

switch to the longer one. [3]

Bitcoin can also be said to provide a "best effort"

guarantee for liveness; i.e.:

New transaction broadcasts do not necessarily

need to reach all nodes. As long as they reach

many nodes, they will get into a block before long.

[3]

Figure 4: Example of a partition among nodes in three distinct
regions for a blockchain-based application. The partition in the
network causes the state of the application to fork while all
nodes continue to make (potentially unsafe) progress.
Eventually, global state is resolved once the partition is healed.

6

Figure 5: Example of a partition among nodes in three distinct
regions for a Prime-based application. The partition in the
network causes Region 3 to wait until a quorum of nodes are
available. Regions 1 & 2 continue to operate safely without
interruption. Once the partition is healed, Region 3 recovers
any necessary updates from other nodes and resumes normal
operation.

With regards to safety, the differences in these

approaches can be seen in figures 4 and 5.

Figure 4 shows how a blockchain-based system

responds to a partition among nodes in three distinct

regions (for all intents and purposes, these could be

datacenters). Before the partition, all nodes are

connected and maintain consistent state. Once the

partition occurs, Region 3 continues to make

progress independently from Regions 1 and 2,

causing the state of the state of the blockchain to

fork. Once the partition heals, nodes are able to

communicate once again. Because the branch of the

chain in Region 3 is shorter, all blocks that were

calculated are no longer considered valid and must

be discarded.

Figure 5 shows how a Prime-based application

responds to a partition among nodes in three distinct

regions. Like figure 4, the nodes start connected and

in consistent state. However, once the partition

occurs in the Prime-based network, Region 3 must

wait until a quorum is available in order to continue.

Any pending updates in Region 3 must be buffered;

whereas Regions 1 and 2 continue to safely make

progress. Once the partition heals, Region 3 recovers

any missing state from the other nodes, and may

begin processing any updates received during the

outage.

Bitcoin is able to tolerate weak safety in

exchange for network flexibility because, in a highly

connected and geographically diverse network, any

partitions are likely to be short-lived and affect a

smaller percentage of nodes. However, this example

demonstrates the limitations of this approach for

internal or business-to-business (B2B) applications

where resources tend to be more concentrated.

4.2 Other Points of Comparison

3.2.1 Topology. One of the most significant

differences between Prime and the Bitcoin

blockchain are the assumptions made about the

topologies of their respective networks.

Prime assumes a closed network wherein all

nodes form a clique: i.e. each server knows about

every other server in the system and they are able to

communicate directly with one another across long

term, authenticated channels. This is a reasonable

requirement for the majority of internal and B2B

applications, but is clearly limiting when compared to

a public, P2P network like Bitcoin. Additionally,

Prime relies on cryptographic techniques to protect

against spoofing, impersonation, replays, and

corrupted messages—which requires that the

network be provisioned with public key

infrastructure (PKI).

Bitcoin, on the other hand, operates across an

unbounded, open network. Because consensus is

based on PoW, instead of cryptographic identities,

nodes across the network can effectively work

together for mutual self-interest without any

knowledge or trust of one another. This has allowed

the Bitcoin network to grow to a global scale without

significant coordination between parties or

centralized authorities.

3.2.2 Attribution. Attribution refers to the

ability of the system to associate actions as being

caused by a specific person/entity. Prime and Bitcoin

treat attribution very differently and, depending on

context, it can be seen as either an asset or a liability.

Within Prime, all updates within the system are

associated with the cryptographic identity of the

originating node. This provides strong attribution,

since a specific node can generally be associated with

the responsible person/entity. This is typically a

desired feature for most internal and B2B

applications with may have specific auditing,

compliance, or regulatory requirements.

 7

Bitcoin, by comparison, offers no intrinsic

mechanism for associating a block with the original

miner. While it is possible in some cases to

determine attribution for blocks or even

transactions, these methods are not part of the

protocol itself and generally require some case-

specific, external information. In the context of a

public blockchain, however, it is generally considered

an asset of the protocol, since it makes the system

largely intractable for regulation by centralized

authorities.

5 CONCLUSION

Prime and the Bitcoin blockchain represent two

fundamentally different solutions to the Byzantine

generals problem. By taking a weaker approach to

safety and liveness, Bitcoin is able to support an

unbounded, unauthenticated, global peer-to-peer

network--enabling a new generation of applications

based on the public blockchain. This new paradigm

of "public" applications is entirely made possible by

the topological flexibility of the blockchain.

However, while this has been a major

advancement in the design and construction of

distributed systems, there are many use cases for

non-public applications wherein Byzantine fault

tolerance is still a necessary requirement. These

include federated applications wherein

information/state is hosted and shared only among

specified set of distinct stakeholders, or even internal

applications that are extremely high-value and/or

security critical. For many of these applications, it is

advantageous to have a fixed network wherein all

nodes are known and authenticated. Additionally,

lack of strong attribution and heavy resource (CPU)

requirements make most blockchain protocols

preclusive for these use cases. Thus, the strong

guarantees for safety and liveness provided by Prime,

along with its performance gains, make it highly

applicable for these types of applications.

REFERENCES

[1] L. Lamport, R. Shostak, M. Pease (1982). "The Byzantine Generals Problem" (PDF). ACM

Transactions on Programming Languages and Systems. 4 (3): 382–401.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.9525&rep=rep1&type=pdf

[2] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Byzantine replication under attack,” in
Dependable Systems and Networks with FTCS and DCC. DSN 2008. IEEE International

Conference on. IEEE, 2008, pp. 197–206. http://www.cnds.jhu.edu/pub/papers/cnds-

2014-1.pdf

[3] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system, 2009,” 2012. [Online].
Available: http://www.bitcoin.org/bitcoin.pdf

[4] A. Back, "Hashcash - a denial of service counter-measure,"

http://www.hashcash.org/papers/hashcash.pdf, 2002..

